{"id":1311,"date":"2023-03-25T10:12:45","date_gmt":"2023-03-25T02:12:45","guid":{"rendered":""},"modified":"2023-03-25T10:12:45","modified_gmt":"2023-03-25T02:12:45","slug":"\u4eba\u5de5\u667a\u80fd\u76d1\u7763\u5b66\u4e60(\u56de\u5f52)","status":"publish","type":"post","link":"https:\/\/bianchenghao6.com\/1311.html","title":{"rendered":"\u4eba\u5de5\u667a\u80fd\u76d1\u7763\u5b66\u4e60(\u56de\u5f52)"},"content":{"rendered":"
\n
\u4eba\u5de5\u667a\u80fd\u76d1\u7763\u5b66\u4e60(\u56de\u5f52)\u8be6\u7ec6\u64cd\u4f5c\u6559\u7a0b<\/span>\n <\/div>\n\u5728Python\u4e2d\u6784\u5efa\u56de\u5f52\u5668<\/h2>\n
# Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
import <\/span>numpy as <\/span>np
from <\/span>sklearn import <\/span>linear_model
import <\/span>sklearn.metrics as <\/span>sm
import <\/span>matplotlib.pyplot as <\/span>plt
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
input = 'D:\/ProgramData\/linear.txt'<\/span>
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
input_data = np.loadtxt<\/span>(input, delimiter=','<\/span>)
X, y = input_data[:, :-1], input_data[:, -1]
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
training_samples = int(0.6 * len<\/span>(X))
testing_samples = len(X) - num_training
X_train, y_train <\/span>= X[:training_samples], y[:training_samples]
X_test, y_test = X[training_samples:], y[training_samples:]
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
reg_linear = linear_model.LinearRegression<\/span>()
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
reg_linear.fit<\/span>(X_train, y_train)
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
y_test_pred = reg_linear.predict<\/span>(X_test)
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
plt.scatter<\/span>(X_test, y_test, color <\/span>= 'red'<\/span>)
plt.plot<\/span>(X_test, y_test_pred, color <\/span>= 'black'<\/span>, linewidth = 2)
plt.xticks<\/span>(())
plt.yticks<\/span>(())
plt.show<\/span>()
<\/span><\/code><\/pre>\n<\/p><\/div>\n\n <\/div>\n
# Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
print(\"Performance of Linear regressor:\"<\/span>)
print(\"Mean absolute error <\/span>=\"<\/span>, round(sm.mean_absolute_error<\/span>(y_test, y_test_pred), 2))
print(\"Mean squared error <\/span>=\"<\/span>, round(sm.mean_squared_error<\/span>(y_test, y_test_pred), 2))
print(\"Median absolute error <\/span>=\"<\/span>, round(sm.median_absolute_error<\/span>(y_test, y_test_pred), 2))
print(\"Explain <\/span>variance score =\"<\/span>, round(sm.explained_variance_score<\/span>(y_test, y_test_pred),
2))
print(\"R2 score =\"<\/span>, round(sm.r2_score<\/span>(y_test, y_test_pred), 2))
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
Mean absolute error <\/span>= 1.78
Mean squared error <\/span>= 3.89
Median absolute error <\/span>= 2.01
Explain <\/span>variance score = -0.09
R2 score = -0.09
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
2,4.82.9,4.72.5,53.2,5.56,57.6,43.2,0.92.9,1.92.4,
3.50.5,3.41,40.9,5.91.2,2.583.2,5.65.1,1.54.5,
1.22.3,6.32.1,2.8
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
import <\/span>numpy as <\/span>np
from <\/span>sklearn import <\/span>linear_model
import <\/span>sklearn.metrics as <\/span>sm
import <\/span>matplotlib.pyplot as <\/span>plt
from <\/span>sklearn.preprocessing import <\/span>PolynomialFeatures
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
input = 'D:\/ProgramData\/Mul_linear.txt'<\/span>
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
input_data = np.loadtxt<\/span>(input, delimiter=','<\/span>)
X, y = input_data[:, :-1], input_data[:, -1]
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
training_samples = int(0.6 * len<\/span>(X))
testing_samples = len(X) - num_training
X_train, y_train <\/span>= X[:training_samples], y[:training_samples]
X_test, y_test = X[training_samples:], y[training_samples:]
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
reg_linear_mul = linear_model.LinearRegression<\/span>()
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
reg_linear_mul.fit<\/span>(X_train, y_train)
<\/span><\/code><\/pre>\n<\/p><\/div>\n # Filename : example.py<\/span>
# Copyright : 2020 By Lidihuo<\/span>
# Author by : www.lidihuo.com<\/span>
# Date : 2020-08-26<\/span>
y_test_pred = reg_linear_mul.predict<\/span>(X_test)
print(\"Performance of Linear regressor:\"<\/span>)
print(\"Mean absolute error <\/span>=\"<\/span>, round(sm.mean_absolute_error<\/span>(y_test, y_test_pred), 2))
print(\"Mean squared error <\/span>=\"<\/span>, round(sm.mean_squared_error<\/span>(y_test, y_test_pred), 2))
print(\"Median absolute error <\/span>=\"<\/span>, round(sm.median_absolute_error<\/span>(y_test, y_test_pred), 2))
print(\"Explain <\/span>variance score =\"<\/span>, round(sm.explained_variance_score<\/span>(y_test, y_test_pred), 2))
print(\"R2 score =\"<\/span>, round(sm.r2_score<\/span>(y_test, y_test_pred), 2))
<\/span><\/code><\/pre>\n<\/p><\/div>\n