样本分布不平衡,机器学习准确率高又有什么用?

(3) 2024-08-31 08:23

Hi,大家好,我是编程小6,很荣幸遇见你,我把这些年在开发过程中遇到的问题或想法写出来,今天说一说
样本分布不平衡,机器学习准确率高又有什么用?,希望能够帮助你!!!。

前面无论是用全部变量还是筛选出的特征变量、无论如何十折交叉验证调参,获得的模型应用于测试集时虽然预测准确率能在90%以上,但与不基于任何信息的随机猜测相比,这个模型都是统计不显著的 (这一点可能意义也不大,样本不平衡时看模型整体准确性无意义)。一个原因应该是样本不平衡导致的。DLBCL组的样品数目约为FL组的3倍。不通过建模而只是盲猜结果为DLBCL即可获得75%的正确率。而FL组的预测准确率却很低。

而通常我们关注的是占少数的样本,如是否患病,我们更希望能尽量发现可能存在的疾病,提前采取措施。

因此如何处理非平衡样品是每一个算法应用于分类问题时都需要考虑的。

不平衡样本的模型构建中的影响主要体现在2个地方:

  1. 随机采样构建决策树时会有较大概率只拿到了样品多的分类,这些树将没有能力预测样品少的分类,从而构成无意义的决策树。
  2. 在决策树的每个分子节点所做的决策会倾向于整体分类纯度,因此样品少的分类对结果的贡献和影响少。

一般处理方式有下面4种:

  1. Class weights: 样品少的类分类错误给予更高的罚分 (impose a heavier cost when errors are made in the minority class)
  2. Down-sampling: 从样品多的类随机移除样品
  3. Up-sampling: 在样品少的类随机复制样品 (randomly replicate instances in the minority class)
  4. Synthetic minority sampling technique (SMOTE): 通过插值在样品少的类中合成填充样本

这些权重加权或采样技术对阈值依赖的评估指标如准确性等影响较大,它们相当于把决策阈值推向了ROC曲线中的”最优位置” (这在Boruta特征变量筛选部分有讲)。但这些权重加权或采样技术对ROC曲线通常影响不会太大。

基于模拟数据的样本不平衡处理

这里先通过一套模拟数据熟悉下处理流程,再应用于真实数据。采用caret包的twoClassSim函数生成包含20个有意义变量和10个噪音变量的数据集。该数据集包含5000个观察样品,分为两组,多数组和少数组的样品数目比例为50:1 (通过intercept参数控制)。

library(dplyr) # for data manipulation library(caret) # for model-building # install.packages("xts") # install.packages("quantmod") # wget https://cran.r-project.org/src/contrib/Archive/DMwR/DMwR_0.4.1.tar.gz # R CMD INSTALL DMwR_0.4.1.tar.gz library(DMwR) # for smote implementation # 或使用smotefamily代替 # library(smotefamily) # for smote implementation library(purrr) # for functional programming (map) library(pROC) # for AUC calculations set.seed(2969) imbal_train <- twoClassSim(5000, intercept = -25, linearVars = 20, noiseVars = 10) imbal_train$Class = ifelse(imbal_train$Class == "Class1", "Normal", "Disease") imbal_train$Class <- factor(imbal_train$Class, levels=c("Disease", "Normal")) imbal_test <- twoClassSim(5000, intercept = -25, linearVars = 20, noiseVars = 10) imbal_test$Class = ifelse(imbal_test$Class == "Class1", "Normal", "Disease") imbal_test$Class <- factor(imbal_test$Class, levels=c("Disease", "Normal")) prop.table(table(imbal_train$Class)) prop.table(table(imbal_test$Class))

样品构成

Disease Normal 0.0204 0.9796 Disease Normal 0.0252 0.9748

构建原始GBM模型

这里应用另外一种集成学习算法 (GBM, Gradient Boosting Machine)进行模型构建。GBM也是效果很好的集成学习算法,可以处理变量的互作和非线性关系。机器学习中常用的GBDTXGBoostLightGBM算法(或工具)都是基于梯度提升机(GBM)的算法思想。

先构建一个原始模型,重复510-折交叉验证寻找最优的模型超参数,采用AUC作为评估标准。这些概念如果不熟悉翻一下往期推文。

# Set up control function for training ctrl <- trainControl(method = "repeatedcv", number = 10, repeats = 5, summaryFunction = twoClassSummary, classProbs = TRUE) # Build a standard classifier using a gradient boosted machine set.seed(5627) orig_fit <- train(Class ~ ., data = imbal_train, method = "gbm", verbose = FALSE, metric = "ROC", trControl = ctrl) # Build custom AUC function to extract AUC # from the caret model object test_roc <- function(model, data) { roc(data$Class, predict(model, data, type = "prob")[, "Disease"]) } orig_fit %>% test_roc(data = imbal_test) %>% auc()

AUC值为0.95,还是很不错的。

Setting levels: control = Disease, case = Normal Setting direction: controls > cases Area under the curve: 0.9538

confusion matrix (预测结果采用默认阈值)来看,Disease的分类效果一般,准确率(敏感性)只有30.6%。不管是Normal还是Disease都倾向于预测为Normal,特异性低,这是因为样品不平衡导致的。而我们通常更希望尽早发现疾病的存在。

predictions_train <- predict(orig_fit, newdata=imbal_test) confusionMatrix(predictions_train, imbal_test$Class)
Confusion Matrix and Statistics Reference Prediction Disease Normal Disease 38 17 Normal 88 4857 Accuracy : 0.979 95% CI : (0.9746, 0.9828) No Information Rate : 0.9748 P-Value [Acc > NIR] : 0.02954 Kappa : 0.4109 Mcnemar's Test P-Value : 8.415e-12 Sensitivity : 0.3016 Specificity : 0.9965 Pos Pred Value : 0.6909 Neg Pred Value : 0.9822 Prevalence : 0.0252 Detection Rate : 0.0076 Detection Prevalence : 0.0110 Balanced Accuracy : 0.6490 'Positive' Class : Disease

采用权重分配或抽样方式处理样品不平衡问题

这里应用的GBM模型自身有一个参数weights可以用于设置样品的权重;carettrainControl函数中提供了sampling参数可以进行up-sampledown-sample,或其它任何算法的采样方式(这里用的是smotefamily::SMOTE函数进行采样)。

# Create model weights (they sum to one) # 给每一个观察一个权重 class1_weight = (1/table(imbal_train$Class)[['Normal']]) * 0.5 class2_weight = (1/table(imbal_train$Class)[["Disease"]]) * 0.5 model_weights <- ifelse(imbal_train$Class == "Normal", class1_weight, class2_weight) # Use the same seed to ensure same cross-validation splits ctrl$seeds <- orig_fit$control$seeds # Build weighted model weighted_fit <- train(Class ~ ., data = imbal_train, method = "gbm", verbose = FALSE, weights = model_weights, metric = "ROC", trControl = ctrl) # Build down-sampled model ctrl$sampling <- "down" down_fit <- train(Class ~ ., data = imbal_train, method = "gbm", verbose = FALSE, metric = "ROC", trControl = ctrl) # Build up-sampled model ctrl$sampling <- "up" up_fit <- train(Class ~ ., data = imbal_train, method = "gbm", verbose = FALSE, metric = "ROC", trControl = ctrl) # Build smote model ctrl$sampling <- "smote" smote_fit <- train(Class ~ ., data = imbal_train, method = "gbm", verbose = FALSE, metric = "ROC", trControl = ctrl)

计算下每个模型的AUC

# Examine results for test set model_list <- list(original = orig_fit, weighted = weighted_fit, down = down_fit, up = up_fit, SMOTE = smote_fit) model_list_roc <- model_list %>% map(test_roc, data = imbal_test) model_list_roc %>% map(auc)

样品加权模型获得的AUC值最高,其次是up-sample, SMOTE, down-sample,结果都比original有提高。

Setting levels: control = Disease, case = Normal Setting direction: controls > cases Setting levels: control = Disease, case = Normal Setting direction: controls > cases Setting levels: control = Disease, case = Normal Setting direction: controls > cases Setting levels: control = Disease, case = Normal Setting direction: controls > cases Setting levels: control = Disease, case = Normal Setting direction: controls > cases $original Area under the curve: 0.9538 $weighted Area under the curve: 0.9793 $down Area under the curve: 0.9667 $up Area under the curve: 0.9778 $SMOTE Area under the curve: 0.9744

绘制下ROC曲线,查看下模型的具体效果展示。样品加权的模型优于其它所有模型,原始模型在假阳性率0-25%时效果差于其它模型。好的模型是在较低假阳性率时具有较高的真阳性率。

results_list_roc <- list(NA) num_mod <- 1 for(the_roc in model_list_roc){ results_list_roc[[num_mod]] <- data_frame(TPR = the_roc$sensitivities, FPR = 1 - the_roc$specificities, model = names(model_list)[num_mod]) num_mod <- num_mod + 1 } results_df_roc <- bind_rows(results_list_roc) results_df_roc$model <- factor(results_df_roc$model, levels=c("original", "down","SMOTE","up","weighted")) # Plot ROC curve for all 5 models custom_col <- c("#000000", "#009E73", "#0072B2", "#D55E00", "#CC79A7") ggplot(aes(x = FPR, y = TPR, group = model), data = results_df_roc) + geom_line(aes(color = model), size = 1) + scale_color_manual(values = custom_col) + geom_abline(intercept = 0, slope = 1, color = "gray", size = 1) + theme_bw(base_size = 18) + coord_fixed(1)
样本分布不平衡,机器学习准确率高又有什么用?_https://bianchenghao6.com/blog__第1张

ggplot(aes(x = FPR, y = TPR, group = model), data = results_df_roc) + geom_line(aes(color = model), size = 1) + facet_wrap(vars(model)) + scale_color_manual(values = custom_col) + geom_abline(intercept = 0, slope = 1, color = "gray", size = 1) + theme_bw(base_size = 18) + coord_fixed(1)
样本分布不平衡,机器学习准确率高又有什么用?_https://bianchenghao6.com/blog__第2张

加权后的模型,总预测准确率降低了一点,但Disease的预测准确性升高了2.47倍,70.63%

predictions_train <- predict(weighted_fit, newdata=imbal_test) confusionMatrix(predictions_train, imbal_test$Class)

结果如下

Confusion Matrix and Statistics Reference Prediction Disease Normal Disease 89 83 Normal 37 4791 Accuracy : 0.976 95% CI : (0.9714, 0.9801) No Information Rate : 0.9748 P-Value [Acc > NIR] : 0.3137 Kappa : 0.5853 Mcnemar's Test P-Value : 3.992e-05 Sensitivity : 0.7063 Specificity : 0.9830 Pos Pred Value : 0.5174 Neg Pred Value : 0.9923 Prevalence : 0.0252 Detection Rate : 0.0178 Detection Prevalence : 0.0344 Balanced Accuracy : 0.8447 'Positive' Class : Disease

从这套测试数据来看,设置权重获得的模型效果是最好的。但这不是绝对的,应用于自己的数据时,需要都尝试一下,看看自己的数据更适合哪种方式。

未完待续......

机器学习系列教程

从随机森林开始,一步步理解决策树、随机森林、ROC/AUC、数据集、交叉验证的概念和实践。

文字能说清的用文字、图片能展示的用、描述不清的用公式、公式还不清楚的写个简单代码,一步步理清各个环节和概念。

再到成熟代码应用、模型调参、模型比较、模型评估,学习整个机器学习需要用到的知识和技能。

  • 一图感受各种机器学习算法
  • 机器学习算法 - 随机森林之决策树初探(1)
  • 机器学习算法-随机森林之决策树R 代码从头暴力实现(2)
  • 机器学习算法-随机森林之决策树R 代码从头暴力实现(3)
  • 机器学习算法-随机森林之理论概述
  • 机器学习算法-随机森林初探(1)
  • 机器学习 - 随机森林手动10 折交叉验证
  • 机器学习 模型评估指标 - ROC曲线和AUC值
  • 机器学习 - 训练集、验证集、测试集
  • 一个函数统一238个机器学习R包,这也太赞了吧
  • 基于Caret和RandomForest包进行随机森林分析的一般步骤 (1)
  • Caret模型训练和调参更多参数解读(2)
  • 基于Caret进行随机森林随机调参的4种方式
  • 机器学习第17篇 - 特征变量筛选(1)
  • 机器学习第18篇 - Boruta特征变量筛选(2)
  • 机器学习第19篇 - 机器学习系列补充:数据集准备和更正YSX包
  • 机器学习第20篇 - 基于Boruta选择的特征变量构建随机森林
  • 机器学习第21篇 - 特征递归消除RFE算法 理论
  • 机器学习第22篇 - RFE筛选出的特征变量竟然是Boruta的4倍之多
  • 机器学习第23篇 - 更多特征变量却未能带来随机森林分类效果的提升
  • 机器学习相关书籍分享
  • UCI机器学习数据集
  • 送你一个在线机器学习网站,真香!
  • 多套用于机器学习的多种癌症表达数据集
  • 这个统一了238个机器学习模型R包的参考手册推荐给你
  • 莫烦Python机器学习
  • 机器学习与人工智能、深度学习有什么关系?终于有人讲明白了
  • 一套完整的基于随机森林的机器学习流程(特征选择、交叉验证、模型评估))
  • 随机森林预测发现这几个指标对公众号文章吸粉最重要

今天的分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。

上一篇

已是最后文章

下一篇

已是最新文章

发表回复