Hi,大家好,我是编程小6,很荣幸遇见你,我把这些年在开发过程中遇到的问题或想法写出来,今天说一说MongoDB 遇见 spark(进行整合)[亲测有效],希望能够帮助你!!!。
基础篇(能解决工作中80%的问题):
MongoDB的概述、应用场景、下载方式、连接方式和发展历史等
MongoDB数据类型、重要概念以及shell常用指令
MongoDB文档的各种增加、更新、删除操作总结
MongoDB各种查询操作总结
MongoDB对列的各种操作总结
MongoDB中的索引操作总结
进阶篇:
MongoDB聚合操作总结
MongoDB的导入导出、备份恢复总结
MongoDB的用户管理总结
MongoDB复制(副本集)总结
MongoDB 分片总结
MongoDB 遇见 spark(进行整合)
MongoDB内部的存储原理
其它:
python3操作MongoDB的各种案例
MongoDB命令汇总
1、在存储方式上,HDFS以文件为单位,每个文件大小为 64M~128M, 而mongo则表现的更加细颗粒化;
2、MongoDB支持HDFS没有的索引概念,所以在读取速度上更快;
3、MongoDB更加容易进行修改数据;
4、HDFS响应级别为分钟,而MongoDB响应类别为毫秒;
5、可以利用MongoDB强大的 Aggregate功能进行数据筛选或预处理;
6、如果使用MongoDB,就不用像传统模式那样,到Redis内存数据库计算后,再将其另存到HDFS上。
MongoDB可以替换HDFS, 作为大数据平台中最核心的部分,可以分层如下:
第1层:MongoDB或者HDFS;
第2层:资源管理 如 YARN、Mesos、K8S;
第3层:计算引擎 如 MapReduce、Spark;
第4层:程序接口 如 Pig、Hive、Spark SQL、Spark Streaming、Data Frame等
参考:
github:https://github.com/mongodb/mongo-spark
mongo-python-driver: https://github.com/mongodb/mongo-python-driver/
官方文档:https://www.mongodb.com/docs/spark-connector/current/
mongo-spark/examples/src/test/python/introduction.py
# -*- coding: UTF-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# To run this example use:
# ./bin/spark-submit --master "local[4]" \
# --conf "spark.mongodb.input.uri=mongodb://127.0.0.1/test.coll?readPreference=primaryPreferred" \
# --conf "spark.mongodb.output.uri=mongodb://127.0.0.1/test.coll" \
# --packages org.mongodb.spark:mongo-spark-connector_2.11:2.0.0 \
# introduction.py
from pyspark.sql import SparkSession
if __name__ == "__main__":
spark = SparkSession.builder.appName("Python Spark SQL basic example").getOrCreate()
logger = spark._jvm.org.apache.log4j
logger.LogManager.getRootLogger().setLevel(logger.Level.FATAL)
# Save some data
characters = spark.createDataFrame([("Bilbo Baggins", 50), ("Gandalf", 1000), ("Thorin", 195), ("Balin", 178), ("Kili", 77), ("Dwalin", 169), ("Oin", 167), ("Gloin", 158), ("Fili", 82), ("Bombur", None)], ["name", "age"])
characters.write.format("com.mongodb.spark.sql").mode("overwrite").save()
# print the schema
print("Schema:")
characters.printSchema()
# read from MongoDB collection
df = spark.read.format("com.mongodb.spark.sql").load()
# SQL
df.registerTempTable("temp")
centenarians = spark.sql("SELECT name, age FROM temp WHERE age >= 100")
print("Centenarians:")
centenarians.show()
今天的分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。