Hi,大家好,我是编程小6,很荣幸遇见你,我把这些年在开发过程中遇到的问题或想法写出来,今天说一说
mysql 覆盖索引_MySQL创建索引,希望能够帮助你!!!。
概念
如果索引包含所有满足查询需要的数据的索引成为覆盖索引(Covering Index),也就是平时所说的不需要回表操作
判断标准
CREATE TABLE `inventory` ( `inventory_id` mediumint(8) unsigned NOT NULL AUTO_INCREMENT, `film_id` smallint(5) unsigned NOT NULL, `store_id` tinyint(3) unsigned NOT NULL, `last_update` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, PRIMARY KEY (`inventory_id`), KEY `idx_fk_film_id` (`film_id`), KEY `idx_store_id_film_id` (`store_id`,`film_id`), CONSTRAINT `fk_inventory_film` FOREIGN KEY (`film_id`) REFERENCES `film` (`film_id`) ON UPDATE CASCADE, CONSTRAINT `fk_inventory_store` FOREIGN KEY (`store_id`) REFERENCES `store` (`store_id`) ON UPDATE CASCADE ) ENGINE=InnoDB AUTO_INCREMENT=4582 DEFAULT CHARSET=utf8 |
查询语句
mysql> EXPLAIN SELECT store_id, film_id FROM sakila.inventory\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: inventory type: index possible_keys: NULL key: idx_store_id_film_id key_len: 3 ref: NULL rows: 4581 Extra: Using index 1 row in set (0.03 sec)
在大多数引擎中,只有当查询语句所访问的列是索引的一部分时,索引才会覆盖。但是,InnoDB不限于此,InnoDB的二级索引在叶子节点中存储了 primary key的值。因此,sakila.actor表使用InnoDB,而且对于是last_name上有索引,所以,索引能覆盖那些访问actor_id的查 询,如下
mysql> EXPLAIN SELECT actor_id, last_name FROM sakila.actor WHERE last_name = 'HOPPER'\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: actor type: ref possible_keys: idx_actor_last_name key: idx_actor_last_name key_len: 137 ref: const rows: 2 Extra: Using where; Using index 1 row in set (0.00 sec)
使用索引进行排序
MySQL中,有两种方式生成有序结果集:一是使用filesort,二是按索引顺序扫描
利用索引进行排序操作是非常快的,而且可以利用同一索引同时进 行查找和排序操作。当索引的顺序与ORDER BY中的列顺序相同且所有的列是同一方向(全部升序或者全部降序)时,可以使用索引来排序,如果查询是连接多个表,仅当ORDER BY中的所有列都是第一个表的列时才会使用索引,其它情况都会使用filesort
CREATE TABLE `actor` ( `actor_id` int(10) unsigned NOT NULL AUTO_INCREMENT, `name` varchar(16) NOT NULL DEFAULT '', `password` varchar(16) NOT NULL DEFAULT '', PRIMARY KEY (`actor_id`), KEY `name` (`name`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 ; insert into actor(name,password) values ('cat01',''),('cat02',''),('ddddd',''),('aaaaa','');
1、 explain select actor_id from actor order by actor_id \G
mysql> explain select actor_id from actor order by actor_id \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: actor type: index possible_keys: NULL key: PRIMARY key_len: 4 ref: NULL rows: 4 Extra: Using index 1 row in set (0.00 sec)
2、explain select actor_id from actor order by password \G
mysql> explain select actor_id from actor order by password \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: actor type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 4 Extra: Using filesort 1 row in set (0.00 sec)
3、explain select actor_id from actor order by name \G
mysql> explain select actor_id from actor order by name \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: actor type: index possible_keys: NULL key: name key_len: 50 ref: NULL rows: 4 Extra: Using index 1 row in set (0.00 sec)
当MySQL不能使用索引进行排序时,就会利用自己的排序算法(快速排序算法)在内存(sort buffer)中对数据进行排序,如果内存装载不下,它会将磁盘上的数据进行分块,再对各个数据块进行排序,然后将各个块合并成有序的结果集(实际上就是外排序)
对于filesort,MySQL有两种排序算法
1、两遍扫描算法(Two passes)
实现方式是先将须要排序的字段和可以直接定位到相关行数据的指针信息取出,然后在设定的内存(通过参数sort_buffer_size设定)中进行排序,完成排序之后再次通过行指针信息取出所需的Columns
注:该算法是4.1之前采用的算法,它需要两次访问数据,尤其是第二次读取操作会导致大量的随机I/O操作。另一方面,内存开销较小
2、 一次扫描算法(single pass)
该算法一次性将所需的Columns全部取出,在内存中排序后直接将结果输出
注: 从 MySQL 4.1 版本开始使用该算法。它减少了I/O的次数,效率较高,但是内存开销也较大。如果我们将并不需要的Columns也取出来,就会极大地浪费排序过程所需要 的内存。在 MySQL 4.1 之后的版本中,可以通过设置 max_length_for_sort_data 参数来控制 MySQL 选择第一种排序算法还是第二种。当取出的所有大字段总大小大于 max_length_for_sort_data 的设置时,MySQL 就会选择使用第一种排序算法,反之,则会选择第二种。为了尽可能地提高排序性能,我们自然更希望使用第二种排序算法,所以在 Query 中仅仅取出需要的 Columns 是非常有必要的。
当对连接操作进行排序时,如果ORDER BY仅仅引用第一个表的列,MySQL对该表进行filesort操作,然后进行连接处理,此时,EXPLAIN输出“Using filesort”;否则,MySQL必须将查询的结果集生成一个临时表,在连接完成之后进行filesort操作,此时,EXPLAIN输出 “Using temporary;Using filesort”
今天的分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。
上一篇
已是最后文章
下一篇
已是最新文章