Hi,大家好,我是编程小6,很荣幸遇见你,我把这些年在开发过程中遇到的问题或想法写出来,今天说一说数据库系统原理之数据管理技术的发展,希望能够帮助你!!!。
第一代数据库系统有如下两类代表:
这两类数据库系统具有的共同特点:
支持关系数据模式的关系数据库系统是第二代数据库系统。
20世纪70年代是关系数据库理论研究和原型开发的时代。
经过大量高层次的研究和开发取得了以下主要成果:
关系数据库是以关系模型为基础的,而关系模型是由数据结构、关系操作和数据完整性三部分组成。
第二代关系数据库系统具有模型简单清晰、理论基础好、数据独立性强、数据库语言非过程化和标准化等特点。
从20世纪80年代开始,数据库界广泛开展了面向对象数据库系统(OODBS)的研究。
从面向对象(OO)模型、面向对象数据库管理系统(OODBMS)实现技术、OODBMS产品研发和应用等各个层面进行了大量的创新工作。
由于面向对象数据模型中许多功能难以实现,面向对象数据库系统过于复杂不易使用,尽管开发出许多面向对象数据库产品,但是成熟度低,最终没有被市场普遍接受。
1990 年高级 DBMS 功能委员会发表了 《第三代数据库系统宣言》的文章,提出了第三代数据库系统应具有的三个基本特征,《宣言》中称为三条基本原则。
这三个基本特征如下:
既然对于第三代数据库系统并没有形成一致的认识,因而通常把第二代以后的数据库系统称为新一代数据库系统。
数据库与其他计算机技术相结合,是数据库技术发展的一个显著特征。
数据仓库、工程数据库、统计数据库、空间数据库、科学数据库等多种数据库
计算机系统中存在着两类不同的数据处理工作:
20世纪80年代数据仓库(Data Warehouse,DW)技术应运而生。
传统的数据库技术为操作型处理服务
数据仓库为分析型处理服务
数据仓库是面向主题的、集成的、稳定的、随时间变化的数据集合,用以支持管理决策的过程。
数据仓库用于支持决策,面向分析型数据处理,不同于提供业务效率的操作型数据库。
数据仓库对分布在组织或企业中的多个异构数据源集成,按照决策主题选择数据并以新的数据模型存储。
存储在数据仓库中的数据一般不能修改。
数据仓库主要有以下特征:
粒度是指数据仓库的数据单位中保存数据的细化或综合程度的级别,细化程度越高,粒度级就越小,相反地,细化程度越低,粒度级就越大。
分割是将数据分散到各自的物理单元中,以便能分别处理,以提高数据处理的效率。
维是人们观察数据的特定角度,是考虑问题时的一类属性。
数据集市(Data Mart)的基本思想是自下而上的数据仓库的开发方法。
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现并提取隐藏在其中的、人们事先不知道的、但又是潜在有用的信息和知识的一种技术。
它又被称为数据库中的知识发现(Knowledge Discovery in Database,KDD),其与数据库、数理统计、机器学习、模式识别、模糊数学等诸多技术相关。
数据处理不是数据挖掘。
大数据(Big Data)时代
目前大数据尚无统一的定义,通常被认为是数据量很大、数据形式多样化的数据。
一般意义上,大数据是指无法在可容忍的时间内用现有信息技术和软、硬件工具对其进行感知、获取、管理、处理的服务的数据集合,且其具有如下特征:
分布式文件系统 HDFS
横向扩展
NoSQL 系统支持的数据存储模型通常有键值(Key-Value)模型、文档(Document)模型、列(Column)模型和图(Graph)模型等。
MapReduce 以 Key/Value 的分布式存储系统为基础,通过元数据集中存储、数据以 chunk 为单位分布存储和数据 chunk 冗余复制来保证其高可用性。
MapReduce 是一种并行编程模型。
MapReduce 是一种简单易用的软件框架。
通常,计算结点和存储结点是同一个节点,即 MapReduce 框架和 Hadoop 分布式文件系统运行于相同的结点集。
今天的分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。