python 敏感词过滤「终于解决」

Python (99) 2023-03-26 13:32

Hi,大家好,我是编程小6,很荣幸遇见你,我把这些年在开发过程中遇到的问题或想法写出来,今天说一说python 敏感词过滤「终于解决」,希望能够帮助你!!!。

https://github.com/toolgood/ToolGood.Words

名为DFA的算法,即Deterministic Finite Automaton算法,翻译成中文就是确定有穷自动机算法。它的基本思想是基于状态转移来检索敏感词,只需要扫描一次待检测文本,就能对所有敏感词进行检测

假设我们有以下5个敏感词需要检测:傻逼、傻子、傻大个、坏蛋、坏人。那么我们可以先把敏感词中有相同前缀的词组合成一个树形结构,不同前缀的词分属不同树形分支,以上述5个敏感词为例,可以初始化成如下2棵树:

python 敏感词过滤「终于解决」_https://bianchenghao6.com/blog_Python_第1张

image.png

class DFAFilter(object):
    def __init__(self):
        self.keyword_chains = {}  # 关键词链表
        self.delimit = '\x00'  # 限定

    def add(self, keyword):
        keyword = keyword.lower()  # 关键词英文变为小写
        chars = keyword.strip()  # 关键字去除首尾空格和换行
        if not chars:  # 如果关键词为空直接返回
            return
        level = self.keyword_chains
        # 遍历关键字的每个字
        for i in range(len(chars)):
            # 如果这个字已经存在字符链的key中就进入其子字典
            if chars[i] in level:
                level = level[chars[i]]
            else:
                if not isinstance(level, dict):
                    break
                for j in range(i, len(chars)):
                    level[chars[j]] = {}
                    last_level, last_char = level, chars[j]
                    level = level[chars[j]]
                last_level[last_char] = {self.delimit: 0}
                break
        if i == len(chars) - 1:
            level[self.delimit] = 0

    def parse(self, cache_name, path):
            with open(path, encoding='utf-8') as f:
                for keyword in f:
                    self.add(str(keyword).strip())
                f = f.read()
        # print(self.keyword_chains)

    def filter(self, message, repl="*"):
        message = message.lower()
        ret = []
        start = 0
        while start < len(message):
            level = self.keyword_chains
            step_ins = 0
            for char in message[start:]:
                if char in level:
                    step_ins += 1
                    if self.delimit not in level[char]:
                        level = level[char]
                    else:
                        ret.append(repl * step_ins)
                        start += step_ins - 1
                        break
                else:
                    ret.append(message[start])
                    break
            else:
                ret.append(message[start])
            start += 1

        return ''.join(ret)

发表回复