这个实例中有一个KafkaSpout,一个KafkaBolt,一个自定义Bolt QueryBolt。数据流程是KafkaSpout从topic为recommend的消息队列中取出String类型的消息,发送给QueryBolt。QueryBolt不做任何处理,直接转发给KafkaBolt,只把经过的消息存储在list。QueryBolt中自定义了cleanup方法,该方法在topology被杀死时调用,方法中把list中的所有数据打印在"C://"+this+".txt"文件中。KafkaBolt将接收到的数据直接转存在主题为recevier的kafka消息队列中。
代码结构:
以下是详细代码:
首先是topology.java
import
java.util.HashMap;
import
java.util.Map;
import
backtype.storm.Config;
import
backtype.storm.LocalCluster;
//import backtype.storm.LocalCluster;
import
backtype.storm.StormSubmitter;
import
backtype.storm.spout.SchemeAsMultiScheme;
import
backtype.storm.topology.TopologyBuilder;
import
storm.kafka.BrokerHosts;
import
storm.kafka.KafkaSpout;
import
storm.kafka.SpoutConfig;
import
storm.kafka.ZkHosts;
import
storm.kafka.bolt.KafkaBolt;
public
class
topology {
public
static
void
main(String [] args)
throws
Exception{
//配置zookeeper 主机:端口号
BrokerHosts brokerHosts =
new
ZkHosts(
"110.64.76.130:2181,110.64.76.131:2181,110.64.76.132:2181"
);
//接收消息队列的主题
String topic=
"recommend"
;
//zookeeper设置文件中的配置,如果zookeeper配置文件中设置为主机名:端口号 ,该项为空
String
zkRoot
=
""
;
//任意
String spoutId=
"zhou"
;
SpoutConfig spoutConfig=
new
SpoutConfig(brokerHosts, topic, zkRoot, spoutId);
//设置如何处理kafka消息队列输入流
spoutConfig.scheme=
new
SchemeAsMultiScheme(
new
MessageScheme());
Config conf=
new
Config();
//不输出调试信息
conf.setDebug(
false
);
//设置一个spout task中处于pending状态的最大的tuples数量
conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING,
1
);
Map<String, String> map=
new
HashMap<String,String>();
// 配置Kafka broker地址
map.put(
"metadata.broker.list"
,
"master:9092,slave1:9092,slave2:9092"
);
// serializer.class为消息的序列化类
map.put(
"serializer.class"
,
"kafka.serializer.StringEncoder"
);
conf.put(
"kafka.broker.properties"
, map);
// 配置KafkaBolt生成的topic
conf.put(
"topic"
,
"receiver"
);
TopologyBuilder builder =
new
TopologyBuilder();
builder.setSpout(
"spout"
,
new
KafkaSpout(spoutConfig),
1
);
builder.setBolt(
"bolt1"
,
new
QueryBolt(),
1
).setNumTasks(
1
).shuffleGrouping(
"spout"
);
builder.setBolt(
"bolt2"
,
new
KafkaBolt<String, String>(),
1
).setNumTasks(
1
).shuffleGrouping(
"bolt1"
);
if
(args.length==
0
){
LocalCluster cluster =
new
LocalCluster();
//提交本地集群
cluster.submitTopology(
"test"
, conf, builder.createTopology());
//等待6s之后关闭集群
Thread.sleep(
6000
);
//关闭集群
cluster.shutdown();
}
StormSubmitter.submitTopology(
"test"
, conf, builder.createTopology());
}
}
然后是MessageScheme.java
import
java.io.UnsupportedEncodingException;
import
java.util.List;
import
org.slf4j.Logger;
import
org.slf4j.LoggerFactory;
import
backtype.storm.spout.Scheme;
import
backtype.storm.tuple.Fields;
import
backtype.storm.tuple.Values;
public
class
MessageScheme
implements
Scheme {
private
static
final
Logger LOGGER = LoggerFactory.getLogger(MessageScheme.
class
);
public
List<Object> deserialize(
byte
[] ser) {
try
{
//从kafka中读取的值直接序列化为UTF-8的str
String mString=
new
String(ser,
"UTF-8"
);
return
new
Values(mString);
}
catch
(UnsupportedEncodingException e) {
// TODO Auto-generated catch block
LOGGER.error(
"Cannot parse the provided message"
);
}
return
null
;
}
public
Fields getOutputFields() {
// TODO Auto-generated method stub
return
new
Fields(
"msg"
);
}
}
最后是QueryBolt.java
import
java.io.FileNotFoundException;
import
java.io.FileOutputStream;
import
java.io.IOException;
import
java.io.PrintStream;
import
java.util.ArrayList;
import
java.util.List;
import
java.util.Map;
import
java.util.Vector;
import
backtype.storm.task.OutputCollector;
import
backtype.storm.task.TopologyContext;
import
backtype.storm.topology.IRichBolt;
import
backtype.storm.topology.OutputFieldsDeclarer;
import
backtype.storm.tuple.Fields;
import
backtype.storm.tuple.Tuple;
import
backtype.storm.tuple.Values;
public
class
QueryBolt
implements
IRichBolt {
List<String> list;
OutputCollector collector;
public
void
prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
list=
new
ArrayList<String>();
this
.collector=collector;
}
public
void
execute(Tuple input) {
// TODO Auto-generated method stub
String str=(String) input.getValue(
0
);
//将str加入到list
list.add(str);
//发送ack
collector.ack(input);
//发送该str
collector.emit(
new
Values(str));
}
public
void
cleanup() {
//topology被killed时调用
//将list的值写入到文件
try
{
FileOutputStream outputStream=
new
FileOutputStream(
"C://"
+
this
+
".txt"
);
PrintStream p=
new
PrintStream(outputStream);
p.println(
"begin!"
);
p.println(list.size());
for
(String tmp:list){
p.println(tmp);
}
p.println(
"end!"
);
try
{
p.close();
outputStream.close();
}
catch
(IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
catch
(FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public
void
declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(
new
Fields(
"message"
));
}
public
Map<String, Object> getComponentConfiguration() {
// TODO Auto-generated method stub
return
null
;
}
}
问题1:zkRoot如何设置?非常重要,设置错误无法正确从kafka消息队列中取出数据。
观察 server.properties 文件:
zookeeper.connect=master:2181,slave1:2181,slave2:2181
此时zkRoot="";
如果zookeeper.connect=master:2181,slave1:2181,slave2:2181/ok
此时zkRoot等于"/ok"
问题2:为什么KafkaSpout启动之后,不能从头开始读起,而是自动跳过了kafka消息队列之前的内容,只处理KafkaSpout启动之后消息队列中新增的值?
因为KafkaSpout默认跳过了Kafka消息队列之前就存在的值,如果要从头开始处理,那么需要设置spoutConfig.forceFromStart=true,即从offset最小的开始读起。
附录:KafkaSpout中关于 SpoutConfig的相关定义
SpoutConfig继承自KafkaConfig。由于SpoutConfig和KafkaConfig所有的instance field全是
public
, 因此在使用构造方法后,可以直接设置各个域的值。
public
class
SpoutConfig
extends
KafkaConfig
implements
Serializable {
public
List<String> zkServers =
null
;
//记录Spout读取进度所用的zookeeper的host
public
Integer zkPort =
null
;
//记录进度用的zookeeper的端口
public
String zkRoot =
null
;
//进度信息记录于zookeeper的哪个路径下
public
String id =
null
;
//进度记录的id,想要一个新的Spout读取之前的记录,应把它的id设为跟之前的一样。
public
long
stateUpdateIntervalMs =
2000
;
//用于metrics,多久更新一次状态。
public
SpoutConfig(BrokerHosts hosts, String topic, String zkRoot, String id) {
super
(hosts, topic);
this
.zkRoot = zkRoot;
this
.id = id;
}
}
public
class
KafkaConfig
implements
Serializable {
public
final
BrokerHosts hosts;
//用以获取Kafka broker和partition的信息
public
final
String topic;
//从哪个topic读取消息
public
final
String clientId;
// SimpleConsumer所用的client id
public
int
fetchSizeBytes =
1024
*
1024
;
//发给Kafka的每个FetchRequest中,用此指定想要的response中总的消息的大小
public
int
socketTimeoutMs =
10000
;
//与Kafka broker的连接的socket超时时间
public
int
fetchMaxWait =
10000
;
//当服务器没有新消息时,消费者会等待这些时间
public
int
bufferSizeBytes =
1024
*
1024
;
//SimpleConsumer所使用的SocketChannel的读缓冲区大小
public
MultiScheme scheme =
new
RawMultiScheme();
//从Kafka中取出的byte[],该如何反序列化
public
boolean
forceFromStart =
false
;
//是否强制从Kafka中offset最小的开始读起
public
long
startOffsetTime = kafka.api.OffsetRequest.EarliestTime();
//从何时的offset时间开始读,默认为最旧的offset
public
long
maxOffsetBehind =
100000
;
//KafkaSpout读取的进度与目标进度相差多少,相差太多,Spout会丢弃中间的消息
public
boolean
useStartOffsetTimeIfOffsetOutOfRange =
true
;
//如果所请求的offset对应的消息在Kafka中不存在,是否使用startOffsetTime
public
int
metricsTimeBucketSizeInSecs =
60
;
//多长时间统计一次metrics
public
KafkaConfig(BrokerHosts hosts, String topic) {
this
(hosts, topic, kafka.api.OffsetRequest.DefaultClientId());
}
public
KafkaConfig(BrokerHosts hosts, String topic, String clientId) {
this
.hosts = hosts;
this
.topic = topic;
this
.clientId = clientId;
}
}