目标检测(一)——目标检测综述(持续更新中)

(4) 2024-04-25 19:12

Hi,大家好,我是编程小6,很荣幸遇见你,我把这些年在开发过程中遇到的问题或想法写出来,今天说一说目标检测(一)——目标检测综述(持续更新中),希望能够帮助你!!!。

文章目录

  • 1. 什么是目标检测?
  • 2. 目标检测要解决的核心问题
  • 3. 目标检测学习资源
    • 3.1 Papers With Code - Object Detection on COCO test-dev
    • 3.2 目标检测论文、代码整理
    • 3.3各大论文期刊目标检测
  • 4. 目标检测最新进展
  • 参考

1. 什么是目标检测?

目标检测(一)——目标检测综述(持续更新中)_https://bianchenghao6.com/blog__第1张

**目标检测 **的任务是找出图像中所有感兴趣的目标(物体),确定它们的位置和大小,是机器视觉领域的核心问题之一。由于各类物体有不同的外观,形状,姿态,加上成像时光照,遮挡等因素的干扰,目标检测一直是机器视觉领域最具有挑战性的问题。

计算机视觉中关于图像识别有四大类任务:
分类-Classification:解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。
定位-Location:解决“在哪里?”的问题,即定位出这个目标的的位置。
检测-Detection:解决“是什么?在哪里?”的问题,即定位出这个目标的的位置并且知道目标物是什么。
分割-Segmentation:分为实例的分割(Instance-level)和场景分割(Scene-level),解决“每一个像素属于哪个目标物或场景”的问题。

2. 目标检测要解决的核心问题

除了图像分类之外,目标检测要解决的核心问题是:
1.目标可能出现在图像的任何位置。
2.目标有各种不同的大小。
3.目标可能有各种不同的形状。
如果用矩形框来定义目标,则矩形有不同的宽高比。由于目标的宽高比不同,因此采用经典的滑动窗口+图像缩放的方案解决通用目标检测问题的成本太高。

3. 目标检测学习资源

3.1 Papers With Code - Object Detection on COCO test-dev

目标检测(一)——目标检测综述(持续更新中)_https://bianchenghao6.com/blog__第2张

https://www.paperswithcode.com/sota/object-detection-on-coco
上边的链接是Papers With Code网站关于图像目标检测的排名,Papers With COde 是一个特别值得收藏的网址,网站收录了当前各种不同机器学习任务的排名,其中包含论文与代码的链接。现有目标检测排名主要是基于COCO数据集进行的排名,网站会实时更新,是一个学习的好网站。以下展示了部分机器任务,其他方向可以去网站看一下,绝对物超所值。
目标检测(一)——目标检测综述(持续更新中)_https://bianchenghao6.com/blog__第3张

3.2 目标检测论文、代码整理

目标检测(一)——目标检测综述(持续更新中)_https://bianchenghao6.com/blog__第4张

这个网站是一个整理计算视觉的网站,上边会定期更新最新发表的论文以及相关的代码。而且这个也是不仅仅是目标检测一个分类,感兴趣的同学还可以进去看一下其他方向整理的论文与代码。
Object Detection - handong1587

3.3各大论文期刊目标检测

Detector VOC07 (mAP@IoU=0.5) VOC12 (mAP@IoU=0.5) COCO (mAP@IoU=0.5:0.95) Published In
R-CNN 58.5 - - CVPR’14
SPP-Net 59.2 - - ECCV’14
MR-CNN 78.2 (07+12) 73.9 (07+12) - ICCV’15
Fast R-CNN 70.0 (07+12) 68.4 (07++12) 19.7 ICCV’15
Faster R-CNN 73.2 (07+12) 70.4 (07++12) 21.9 NIPS’15
YOLO v1 66.4 (07+12) 57.9 (07++12) - CVPR’16
G-CNN 66.8 66.4 (07+12) - CVPR’16
AZNet 70.4 - 22.3 CVPR’16
ION 80.1 77.9 33.1 CVPR’16
HyperNet 76.3 (07+12) 71.4 (07++12) - CVPR’16
OHEM 78.9 (07+12) 76.3 (07++12) 22.4 CVPR’16
MPN - - 33.2 BMVC’16
SSD 76.8 (07+12) 74.9 (07++12) 31.2 ECCV’16
GBDNet 77.2 (07+12) - 27.0 ECCV’16
CPF 76.4 (07+12) 72.6 (07++12) - ECCV’16
R-FCN 79.5 (07+12) 77.6 (07++12) 29.9 NIPS’16
DeepID-Net 69.0 - - PAMI’16
NoC 71.6 (07+12) 68.8 (07+12) 27.2 TPAMI’16
DSSD 81.5 (07+12) 80.0 (07++12) 33.2 arXiv’17
TDM - - 37.3 CVPR’17
FPN - - 36.2 CVPR’17
YOLO v2 78.6 (07+12) 73.4 (07++12) - CVPR’17
RON 77.6 (07+12) 75.4 (07++12) 27.4 CVPR’17
DeNet 77.1 (07+12) 73.9 (07++12) 33.8 ICCV’17
CoupleNet 82.7 (07+12) 80.4 (07++12) 34.4 ICCV’17
RetinaNet - - 39.1 ICCV’17
DSOD 77.7 (07+12) 76.3 (07++12) - ICCV’17
SMN 70.0 - - ICCV’17
Light-Head R-CNN - - 41.5 arXiv’17
YOLO v3 - - 33.0 arXiv’18
SIN 76.0 (07+12) 73.1 (07++12) 23.2 CVPR’18
STDN 80.9 (07+12) - - CVPR’18
RefineDet 83.8 (07+12) 83.5 (07++12) 41.8 CVPR’18
SNIP - - 45.7 CVPR’18
Relation-Network - - 32.5 CVPR’18
Cascade R-CNN - - 42.8 CVPR’18
MLKP 80.6 (07+12) 77.2 (07++12) 28.6 CVPR’18
Fitness-NMS - - 41.8 CVPR’18
RFBNet 82.2 (07+12) - - ECCV’18
CornerNet - - 42.1 ECCV’18
PFPNet 84.1 (07+12) 83.7 (07++12) 39.4 ECCV’18
Pelee 70.9 (07+12) - - NIPS’18
HKRM 78.8 (07+12) - 37.8 NIPS’18
M2Det - - 44.2 AAAI’19
R-DAD 81.2 (07++12) 82.0 (07++12) 43.1 AAAI’19
ScratchDet 84.1 (07++12) 83.6 (07++12) 39.1 CVPR’19
Libra R-CNN - - 43.0 CVPR’19
Reasoning-RCNN 82.5 (07++12) - 43.2 CVPR’19
FSAF - - 44.6 CVPR’19
AmoebaNet + NAS-FPN - - 47.0 CVPR’19
Cascade-RetinaNet - - 41.1 CVPR’19
HTC - - 47.2 CVPR’19
TridentNet - - 48.4 ICCV’19
DAFS 85.3 (07+12) 83.1 (07++12) 40.5 ICCV’19
Auto-FPN 81.8 (07++12) - 40.5 ICCV’19
FCOS - - 44.7 ICCV’19
FreeAnchor - - 44.8 NeurIPS’19
DetNAS 81.5 (07++12) - 42.0 NeurIPS’19
NATS - - 42.0 NeurIPS’19
AmoebaNet + NAS-FPN + AA - - 50.7 arXiv’19
SpineNet - - 52.1 arXiv’19
CBNet - - 53.3 AAAI’20
EfficientDet - - 52.6 CVPR’20
DetectoRS - - 54.7 arXiv’20

该表是参考大神的Github,建议大家也可以去看一看-GitHub - hoya012/deep_learning_object_detection: A paper list of object detection using deep learning.

4. 目标检测最新进展

目标检测(一)——目标检测综述(持续更新中)_https://bianchenghao6.com/blog__第5张
   随着深度学习与计算机硬件的迅速发展,目标检测与深度学习的结合,目标检测也得以迅速发展,这一部分将在后续部分进行详细讲述(持续更新中)。
目标检测(一)——目标检测综述
目标检测(二)——评价指标
目标检测(三)——R-CNN
目标检测(四)——SPP-Net
目标检测(五)——Fast R-CNN
目标检测(六)——Faster R-CNN
         Faster RCNN安装以及Demo运行
目标检测(七)——YOLO
目标检测(八)——YOLO v2
         YOLO v2 安装训练测试
         darkflow安装测试
目标检测(九)——YOLO v3
目标检测(十)——SSD
目标检测(十一)——DSSD

参考

基于深度学习的目标检测算法综述-SigAI
深度学习时代的目标检测算法-炼数成金订阅号
GitHub - hoya012/deep_learning_object_detection: A paper list of object detection using deep learning.

今天的分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。

上一篇

已是最后文章

下一篇

已是最新文章

发表回复