python 网格搜索_Python机器学习:6.4 通过网格搜索调参

Python (5) 2024-05-13 17:23

Hi,大家好,我是编程小6,很荣幸遇见你,我把这些年在开发过程中遇到的问题或想法写出来,今天说一说python 网格搜索_Python机器学习:6.4 通过网格搜索调参,希望能够帮助你!!!。

机器学习算法中有两类参数:从训练集中学习到的参数,比如逻辑斯蒂回归中的权重参数,另一类是模型的超参数,也就是需要人工设定的参数,比如正则项系数或者决策树的深度。

前一节,我们使用验证曲线来提高模型的性能,实际上就是找最优参数。这一节我们学习另一种常用的超参数寻优算法:网格搜索(grid search)。

网格搜索听起来高大上,实际上简单的一笔,就是暴力搜索而已,我们事先为每个参数设定一组值,然后穷举各种参数组合,找到最好的那一组。

Python机器学习:6.4 通过网格搜索调参

GridSearchCV中param_grid参数是字典构成的列表。对于线性SVM,我们只评估参数C;对于RBF核SVM,我们评估C和gamma。

最后, 我们通过best_parmas_得到最优参数组合。

sklearn人性化的一点是,我们可以直接利用最优参数建模(best_estimator_):

Python机器学习:6.4 通过网格搜索调参

Note 网格搜索虽然不错,但是穷举过于耗时,sklearn中还实现了随机搜索,使用 RandomizedSearc

机器学习算法中有两类参数:从训练集中学习到的参数,比如逻辑斯蒂回归中的权重参数,另一类是模型的超参数,也就是需要人工设定的参数,比如正则项系数或者决策树的深度。

前一节,我们使用验证曲线来提高模型的性能,实际上就是找最优参数。这一节我们学习另一种常用的超参数寻优算法:网格搜索(grid search)。

网格搜索听起来高大上,实际上简单的一笔,就是暴力搜索而已,我们事先为每个参数设定一组值,然后穷举各种参数组合,找到最好的那一组。

python 网格搜索_Python机器学习:6.4 通过网格搜索调参_https://bianchenghao6.com/blog_Python_第1张

GridSearchCV中param_grid参数是字典构成的列表。对于线性SVM,我们只评估参数C;对于RBF核SVM,我们评估C和gamma。

最后, 我们通过best_parmas_得到最优参数组合。

sklearn人性化的一点是,我们可以直接利用最优参数建模(best_estimator_):

python 网格搜索_Python机器学习:6.4 通过网格搜索调参_https://bianchenghao6.com/blog_Python_第1张

Note 网格搜索虽然不错,但是穷举过于耗时,sklearn中还实现了随机搜索,使用 RandomizedSearchCV类,随机采样出不同的参数组合。

Python机器学习中文版目录(http://www.aibbt.com/a/20787.html)

转载请注明出处,Python机器学习(http://www.aibbt.com/a/pythonmachinelearning/)

posted on

2018-03-12 11:48

aibbt_com

阅读(3314)

评论(1)

编辑

收藏

今天的分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。

发表回复